AdS/CFT: Then and Now

Igor Klebanov

Talk at Strings 2017
June 26-30, 2017 | Tel Aviv, Israel
On June 30, 1997...

• A group of string theorists working on D-brane/black hole and D-brane/black brane correspondence. Polchinski; Strominger, Vafa; Callan, Maldacena; ...

• A stack of N Dirichlet 3-branes realizes $\mathcal{N}=4$ supersymmetric SU(N) gauge theory in 4 dimensions. It also creates a curved RR charged background of type IIB theory of closed superstrings

$$ds^2 = \left(1 + \frac{L^4}{r^4}\right)^{-1/2} \left(-(dx^0)^2 + (dx^i)^2 \right) + \left(1 + \frac{L^4}{r^4}\right)^{1/2} \left(dr^2 + r^2 d\Omega_5^2\right)$$
• Matching the brane tensions gives \[L^4 = g_{YM}^2 N \alpha' \]

• In addition to the ‘t Hooft large N limit, a new dramatic simplification for \(g_{YM}^2 N \gg 1 \): the metric has small curvature everywhere.

• Bekenstein-Hawking entropy of near-extreme 3-brane

\[
S_{BH} = \frac{2\pi A_h}{\kappa^2} = \frac{\pi^2}{2} N^2 V_3 T^3
\]

• Agrees, up to a factor of 3/4, with that in weakly coupled SYM theory. Gubser, IK, Peet

• Low-energy absorption cross-sections agree exactly

\[
\sigma_{SUGRA} = \frac{\pi^4}{8} \omega^3 L^8 = \frac{\kappa^2 \omega^3 N^2}{32\pi}
\]
The AdS/CFT Duality
Maldacena; Gubser, IK, Polyakov; Witten

- The low-energy limit taken directly in the geometry. Maldacena
- Relates conformal gauge theory in 4 dimensions to string theory on 5-d Anti-de Sitter space times a 5-d compact space. For the $\mathcal{N}=4$ SYM theory this compact space is a 5-d sphere.
- The geometrical symmetry of the AdS$_5$ space realizes the conformal symmetry of the gauge theory.
- Allows us to “solve” strongly coupled gauge theories, e.g. find operator dimensions $\Delta_{\pm} = 2 \pm \sqrt{4 + m^2 L^2}$
Three Lessons Learned

• Lesson 1: String theory can make definite, testable predictions!

• The dimensions of unprotected operators, which are dual to massive string states, grow at strong coupling as

$$2 \left(n g_{\text{YM}} \sqrt{N} \right)^{1/2}$$

• Verified for the Konishi operator dual to the lightest massive string state (n=1) using the exact integrability of the planar $\mathcal{N}=4$ SYM theory. Gromov, Kazakov, Vieira; ...

• Similar successes for the dimensions of high-spin operators, which are dual to spinning strings in AdS space.
Lesson 2: Color Confinement

- The quark anti-quark potential is linear at large distance but nearly Coulombic at small distance.

- The 5-d metric should have a warped form by Polyakov

\[ds^2 = \frac{dz^2}{z^2} + a^2(z)(- (dx^0)^2 + (dx^4)^2) \]

- The space ends at a maximum value of \(z \) where the warp factor is finite. Then the confining string tension is

\[\frac{a^2(z_{max})}{2\pi \alpha'} \]
In some models, like the warped deformed conifold, the confinement happens dynamically through dimensional transmutation. IK, Strassler

\[ds_{10}^2 = h^{-1/2}(y) \left(- (dx^0)^2 + (dx^i)^2 \right) + h^{1/2}(y) ds_6^2 \]
\[\sum_{i=1}^4 z_i^2 = \varepsilon^2 \]

However, the string dual of asymptotically free gauge theory remains elusive.
• Lesson 3: The whole thing has become WAY more than anyone expected 20 years ago.

• I am amazed by the range of applications of the gauge/gravity duality.

• In addition to the strongly coupled plasmas and many body physics, we have learned a lot about quantum entanglement and quantum information. Maldacena; Ryu, Takayanagi; Hubeny, Rangamani, Takayanagi; IK, Kutasov, Murugan; Myers, ...

• This is teaching us a lot about the mysteries of black holes and quantum gravity.

• We have also learned a great deal about the Chern-Simons matter CFTs using both the ABJM type models and the higher-spin AdS/CFT. Aharony et al; Giombi et al; ...
A Brief Wish List

• Getting better control over the regime where the coupling is not very large, but is of order 1. Most gauge theories, including the non-supersymmetric ones, are in this regime. This is crucial for understanding the large N QCD more quantitatively.

• A better understanding of the 1/N corrections to observables. This is crucial for the applications to quantum gravity.

• CFTs dual to de Sitter space.
Another Wish: More Melons

- The “melonic” large N limits, which appear in the tensor models, have already been connected with SYK-like models. Gurau; Witten; IK, Tarnopolsky;...

- Hopefully, the tensor models will find other uses.

\[g^2N^6 \sim N^3\lambda^2 \]

\[g^4N^9 \sim N^3\lambda^4 \]
• HAPPY 20TH BIRTHDAY, ADS/CFT!
• AND MANY HAPPY RETURNS!
D-Branes vs. Geometry

- Dirichlet branes led string theory back to gauge theory in the mid-90’s. Polchinski

- A stack of N Dirichlet 3-branes realizes $\mathcal{N}=4$ supersymmetric SU(N) gauge theory in 4 dimensions. It also creates a curved background of 10-d theory of closed superstrings

$$ds^2 = \left(1 + \frac{L^4}{r^4}\right)^{-1/2} \left(- (dx^0)^2 + (dx^i)^2\right) + \left(1 + \frac{L^4}{r^4}\right)^{1/2} (dr^2 + r^2 d\Omega_5^2)$$

which for small r approaches $AdS_5 \times S^5$

whose radius is related to the coupling by$$L^4 = g_{YM}^2 N \alpha'^2$$
• Gauge invariant operators in the CFT\(_4\) are in one-to-one correspondence with fields (or extended objects) in AdS\(_5\).

• Operator dimensions are an important set of quantities

\[\langle \mathcal{O}_{\Delta_1}(x_1)\mathcal{O}_{\Delta_2}(x_2) \rangle = \frac{\delta_{\Delta_1,\Delta_2}}{|x_1 - x_2|^{2\Delta_1}} \]

• The operator dimension is related to mass of the corresponding field in AdS space:

\[\Delta_\pm = 2 \pm \sqrt{4 + m^2L^2} \]
The quark anti-quark potential

• The z-direction of AdS is dual to the energy scale of the gauge theory: small z is the UV; large z is the IR.

• The quark and anti-quark are placed at the boundary of Anti-de Sitter space (z=0), but the string connecting them bends into the interior (z>0). Due to the scaling symmetry of the AdS space, this gives Coulomb potential

\[V(r) = -\frac{4\pi^2\sqrt{\lambda}}{\Gamma\left(\frac{1}{4}\right)^4 r} \]

Maldacena; Rey, Yee
Confinement and Warped Throat

- To break conformal invariance, change the gauge theory: add to the N D3-branes M D5-branes wrapped over the sphere at the tip of the conifold.
- The 10-d geometry dual to the gauge theory on these branes is the warped deformed conifold (IK, Strassler)

\[ds_{10}^2 = h^{-1/2}(y) \left(- (dx^0)^2 + (dx^i)^2 \right) + h^{1/2}(y) ds_6^2 \]

- \(ds_6^2 \) is the metric of the deformed conifold, a Calabi-Yau space defined by the following constraint on 4 complex variables:

\[\sum_{i=1}^{4} z_i^2 = \varepsilon^2 \]
• The quark anti-quark potential is qualitatively similar to that found in numerical simulations of QCD (graph shows lattice QCD results by G. Bali et al with $r_0 \sim 0.5$ fm).

• The dual gravity provides a `hyperbolic cow’ approximation, i.e. a toy model, for QCD.
Confinement and Entanglement

• Due to the confinement, there is a phase transition in the behavior of the entanglement entropy as function of the strip width. IK, Kutasov, Murugan; Nishioka, Takayanagi

• There is evidence for a similar transition or crossover in lattice gauge theory. Velitsky; Buividovich, Polikarpov; Nakagawa, Nakamura, Motoki, Zakharov
Desperately Seeking non-SUSY

- What are the solid non-supersymmetric examples of the AdS/CFT correspondence?
- Some initial hopes for a large class of non-supersymmetric CFTs at large N, which are certain truncations of the maximally supersymmetric one, were dashed by explicit calculations at small ‘t Hooft coupling λ.

IK, Dymarsky, Roiban
Consider gauge theories on a stack of D3-branes at the tip of a cone \(\mathbb{R}^6/\Gamma\) where the orbifold group \(\Gamma\) breaks all the supersymmetry.

At first sight, the large N gauge theory seems conformal because the beta functions for all single-trace operators vanish. The candidate string dual is \(\text{AdS}_5 \times S^5/\Gamma\). Kachru, Silverstein; Lawrence, Nekrasov, Vafa; Bershadsky, Johanson

However, dimension 4 double-trace operators made out of twisted single-trace ones, \(f O_n O_{-n}\), are induced. Their one-loop planar beta-functions have the Coleman-Weinberg form

\[
\beta_f = a \lambda^2 + 2 \gamma f \lambda + f^2
\]
\[
\beta_\lambda = 0
\]

In any non-SUSY orbifold theory there are some such beta functions that don’t have real zeros.

To complement this perturbative non-SUSY problem, the dual gravitational backgrounds were found to have non-perturbative instabilities. Horowitz, Orgera, Polchinski
AdS$_4$/CFT$_3$

• Besides describing all known particle physics, Quantum Field Theory is important for understanding the vicinity of certain second order phase transitions, such as the all-important water/vapor transition.

• This transition is in the 3-dimensional Ising Model Universality Class.
Critical O(N) Model

- Describes 2nd order phase transitions in statistical systems with O(N) symmetry.

\[S = \int d^3x \left[\frac{1}{2} (\partial_\mu \phi^a)^2 + \frac{\lambda}{2N} (\phi^a \phi^a)^2 \right] \]

- Can be studied using the Wilson-Fisher expansion in \(\varepsilon=4-d \).

- The model simplifies in the large N limit, where it has approximately conserved currents of any even spin.
Higher Spin AdS/CFT

• An AdS\(_4\) dual of the large N model has been proposed. IK, Polyakov

• It is the Vasiliev theory of an infinite number of interacting massless higher-spin gauge fields including gravity.

• Seems simpler than string theory; has only one Regge trajectory.

• There is no small AdS curvature limit. Yet, a great deal of recent progress producing agreement between the Vasiliev theory and the d=3 O(N) model. Giombi, Yin; Giombi, IK

• This class of examples of AdS/CFT does not rely on supersymmetry.
Dualities among Chern-Simons Theories

- Higher spin AdS/CFT correspondence applies also to theories of massless fermions or bosons interacting with Chern-Simons gauge fields in 2+1 dimensions. Aharony et al.; Giombi et al.

\[S_{CS} = \int d^3 x \epsilon^{\mu\nu\rho} \text{Tr}(A_\mu \partial_\nu A_\rho - \frac{2i}{3} A_\mu A_\nu A_\rho) \]

- This served as motivation for conjecturing a precise duality between 2+1 dimensional bosonic and fermionic CFTs. Aharony, Gur-Ari, Yacoby

- Recently conjectured to apply not only at large N, but at small N as well, including U(1) gauge theories. Aharony; Seiberg, Senthil, Wang, Witten; Karch, Tong

- Very nice interplay with condensed matter physics, where Chern-Simons Theories play an important role.
Conclusions

• Throughout its history, string theory has been intertwined with the theory of strong interactions.
• The Anti-de Sitter/Conformal Field Theory correspondence makes this connection precise. It makes many dynamical statements about strongly coupled conformal gauge theories. In particular, allows to study Quantum Entanglement Entropy.
• Extensions of AdS/CFT provide a new geometrical understanding of color confinement and other strong coupling phenomena.
• d-dimensional CFT’s with dynamical fields in the fundamental representation of $O(N)$ dual to interacting higher-spin theories in AdS_{d+1}.