Microstate Geometries

Deep Inside the Black-Hole Regime

Research supported in part by DOE grant DE-SC0011687
Outline

• Microstate Geometries D1-D5-P Holography
• Some families of D1-D5-P states
• Building the holographic duals: Microstate geometries with AdS$_2$/BTZ throats
• The MSW string
• Holographic duals of some MSW states

Based on Collaborations with:

Microstate Geometry Program

Microstate Geometry \equiv Smooth, horizonless solutions to the *bosonic* sector of *supergravity* with the same asymptotic structure as a given black hole/ring.

Singularity resolved; Horizon removed
Microstate Geometry Program

Microstate Geometry \equiv Smooth, horizonless solutions to the bosonic sector of *supergravity* with the same asymptotic structure as a given black hole/ring

Supergravity because we seek stringy resolutions at the horizon scale

- Very long-range effects \Rightarrow Massless limit of strings …
Microstate Geometry Program

Microstate Geometry \(\equiv\) Smooth, horizonless solutions to the bosonic sector of *supergravity* with the same asymptotic structure as a given black hole/ring

Singularity resolved; Horizon removed

Supergravity because we seek stringy resolutions at the horizon scale

- Very long-range effects \(\Rightarrow\) Massless limit of strings …

What is the form of generic, BPS, time-independent horizonless, smooth solutions in supergravity?
Microstate Geometry Program

Microstate Geometry ≡ Smooth, horizonless solutions to the bosonic sector of *supergravity* with the same asymptotic structure as a given black hole/ring

Singularity resolved; Horizon removed

Supergravity because we seek stringy resolutions at the horizon scale

- Very long-range effects ⇒ Massless limit of strings …

What is the form of generic, BPS, *time-independent* horizonless, smooth solutions in supergravity?

What CFT states do they describe?
Primary Motivation for Microstate Geometries

Resolving the black-hole information problem seems to require microstate structure to be encoded and supported at the horizon scale.

Microstate Geometries

- The only (known) mechanism that can support structure at the horizon scale
- Supergravity captures the universal, macroscopic features of microstate structure
- Semi-classical analysis: To what extent can supergravity encode microstate structure?
Black-Hole Microstates and CFT’s
Black-Hole Microstates and CFT’s

- **D1-D5 CFT**: A (4,4) supersymmetric CFT with $c = 6 N_1 N_5$

 \[
 \frac{1}{4} \text{ BPS states} = (R,R)-\text{ground states}
 \]

 \[
 \frac{1}{8} \text{ BPS states} = (\text{any left-moving state}, \text{R ground state}) ^{N_P}
 \]

 Strominger-Vafa state counting for BPS black hole in five dimensions:
 \[
 S = 2\pi \sqrt{N_1 N_5 N_P}
 \]
Black-Hole Microstates and CFT’s

- **D1-D5 CFT:** A (4,4) supersymmetric CFT with $c = 6 N_1 N_5$

 $\frac{1}{4}$ BPS states = (R,R)-ground states

 $\frac{1}{8}$ BPS states = (any left-moving state, R ground state)

 Strominger-Vafa state counting for BPS black hole in *five dimensions*:

 $$ S = 2\pi \sqrt{N_1 N_5 N_P} $$

- **MSW String:** A (0,4) supersymmetric CFT *(Maldacena-Strominger-Witten)*

 M5 brane wrapping a divisor in a CY_3. Dual class, $P \in H^2(\text{CY}_3, \mathbb{Z})$

 MSW string CFT lives on remaining (1+1) dimensions of M5 brane

 Central charge $c = 6 D$,

 $D = \frac{1}{6} \int_{\text{CY}_3} P^3$

 State counting for BPS black hole in *four dimensions*:

 $$ S = 2\pi \sqrt{D N_P} $$
One Focus of the Microstate Geometry Program

Describe the strongly coupled gravity duals of these CFT states. To what extent can these CFT states be captured in supergravity?

⇒ Universal gravity dual of both D1-D5 and MSW.
The D1-D5 CFT

Open D1-D5 superstrings moving in T^4 with $N = N_1 N_5$ Chan-Paton labels: $(T^4)^N / S_N$

\Rightarrow CFT on common D1-D5 direction, $(t,y) \leftrightarrow (u,v)$

$(4,4)$ supersymmetric CFT with $c = 6 N_1 N_5$
The D1-D5 CFT

Open D1-D5 superstrings moving in T^4
with $N \equiv N_1 N_5$ Chan-Paton labels: $(T^4)^N_{/S_N}$

\Rightarrow CFT on common D1-D5 direction, $(t,y) \leftrightarrow (u,v)$

(4,4) supersymmetric CFT with $c = 6 N_1 N_5$

$y = y + 2\pi R$

Maximally spinning ($\frac{1}{4}$ BPS) RR-ground state:
The D1-D5 CFT

Open D1-D5 superstrings moving in T^4 with $N = N_1 N_5$ Chan-Paton labels: $(T^4)^{N/S_N}$

\Rightarrow CFT on common D1-D5 direction, $(t,y) \leftrightarrow (u,v)$

$(4,4)$ supersymmetric CFT with $c = 6 N_1 N_5$

$y = y + 2\pi R$

Maximally spinning ($\frac{1}{4}$ BPS) RR-ground state:

$\begin{align*}
\mathbf{N} &= N_1 N_5 \\
\text{copies} & \\
(+) &= (+,+) \\
(+) &= (+,+) \\
(+) &= (+,+) \\
(+) &= (+,+)
\end{align*}$

$\begin{align*}
(\mathbf{j}_L, \mathbf{j}_R) &= \frac{1}{2} (N, N)
\end{align*}$
Open D1-D5 superstrings moving in T^4 with $N = N_1 N_5$ Chan-Paton labels: $(T^4)^N/S_N$

\Rightarrow CFT on common D1-D5 direction, $(t,y) \leftrightarrow (u,v)$

$(4,4)$ supersymmetric CFT with $c = 6 N_1 N_5$

$y = y + 2\pi R$

Maximally spinning ($\frac{1}{4}$ BPS) RR-ground state:

- Space-time angular momenta
 - $(+,+)$
 - $(+,+)$
 - $(+,+)$
 - $(+,+)$

- Space-time angular momenta
 - $(j_L, j_R) = \frac{1}{2}(N, N)$

Holographic dual: Maximally spinning supertube in $R^{4,1}$

Supertube profile spins out into $M^{4,1}$ space-time

$$(g_1(v), g_2(v), g_3(v), g_4(v)) \in \mathbb{R}^4$$

$$g_1(v) + ig_2(v) = a e^{2\pi iv/R}$$

$$g_3(v) = g_4(v) = 0$$
The D1-D5 CFT

Open D1-D5 superstrings moving in T^4 with $N \equiv N_1 N_5$ Chan-Paton labels: $(T^4)^N/S_N$

\Rightarrow CFT on common D1-D5 direction, $(t,y) \leftrightarrow (u,v)$

$(4,4)$ supersymmetric CFT with $c = 6 N_1 N_5$

$y = y + 2\pi R$

Maximally spinning (1/4 BPS) RR-ground state:

$\{ (+,+), (+,+), (+,+), (+,+), \}$

space-time angular momenta

$N = N_1 N_5$

copies

$(j_L, j_R) = \frac{1}{2}(N, N)$

Holographic dual: Maximally spinning supertube in $R^{4,1}$

Supertube profile spins out into $M^{4,1}$ space-time

$Q_1 Q_5 = R^2 a^2$

$\begin{align*}
(g_1(v), g_2(v), g_3(v), g_4(v)) & \in \mathbb{R}^4 \\
g_1(v) + ig_2(v) &= a e^{2\pi iv/R} \\
g_3(v) = g_4(v) &= 0
\end{align*}$

back-react

$\text{AdS}_3 \times S^3 \times T^4$
More general $\frac{1}{4}$ BPS profiles

Orbifold CFT: k twisted sector

k loops

$|+\frac{1}{2}, +\frac{1}{2}\rangle^k$ \rightarrow Length k loop

$|+\frac{1}{2}, +\frac{1}{2}\rangle^k$
More general $\frac{1}{4}$ BPS profiles

Orbifold CFT: k twisted sector

Act with fermion zero modes
More general $\frac{1}{4}$ BPS profiles

Orbifold CFT: k twisted sector

Act with fermion zero modes

More general class of D1-D5 ground state

$\sim a^2$ copies

$\sim b^2$ copies
More general $\frac{1}{4}$ BPS profiles

Orbifold CFT: k twisted sector

Act with fermion zero modes

More general class of D1-D5 ground state

Holographic dual supertube profile

\[g_1(v) + ig_2(v) = a e^{2\pi i v/R} \]

\[\text{"} g_5(v) \text{"} = b \sin(2\pi k v/R) \]

Partitioning of charges:

\[Q_1 Q_5 = R^2 (a^2 + b^2) \]
Families $\frac{1}{8}$ BPS states in the D1-D5-P system

Generic $\frac{1}{8}$ BPS state: Add general left-moving excitations

Momentum charge, $Q_P = L_{0,\text{left}}$ \hspace{1cm} S = 2\pi \sqrt{Q_1 Q_5 Q_P} \quad \text{(Strominger-Vafa)}
Families $\frac{1}{8}$ BPS states in the D1-D5-P system

Generic $\frac{1}{8}$ BPS state: Add general left-moving excitations

Momentum charge, $Q_P = L_{0,\text{left}}$

$$S = 2\pi \sqrt{Q_1 Q_5 Q_P} \quad \text{(Strominger-Vafa)}$$

Very special families of momentum excitations: “Supergraviton gas”

$$\left(| + \frac{1}{2} , + \frac{1}{2} \rangle_1 \right)^{N_0} \otimes \left(\frac{1}{m! n!} (J_+^1)^m (L_{-1} - J_{-1}^3)^n |00 \rangle_k \right)^{N_{k,m,n}}$$

$$N_0 + k N_{k,m,n} = N \equiv N_1 N_5$$
Families $\frac{1}{8}$ BPS states in the D1-D5-P system

Generic $\frac{1}{8}$ BPS state: Add general left-moving excitations

Momentum charge, $Q_P = L_{0,\text{left}}$

\[S = 2\pi \sqrt{Q_1 Q_5 Q_P} \quad \text{(Strominger-Vafa)} \]

Very special families of momentum excitations: “Supergraviton gas”

\[
(\left| + \frac{1}{2}, + \frac{1}{2} \right>_1)^{N_0} \otimes \left(\frac{1}{m! n!} (J^+_1)^m (L_{-1} - J^3_{-1})^n |00\rangle_k \right)^{N_{k,m,n}}
\]

\[N_0 + k N_{k,m,n} = N \equiv N_1 N_5 \]

Quantum numbers

Define \(\mathcal{N} = \frac{N_1 N_5}{a^2 + b^2} \)

\[
j_L = \frac{1}{2} \mathcal{N} \left(a^2 + \frac{m}{k} b^2 \right), \quad \tilde{j}_R = \frac{1}{2} \mathcal{N} a^2, \quad N_P = \frac{1}{2} \mathcal{N} \frac{m + n}{k} b^2
\]

\[Q_1 Q_5 = R^2 (a^2 + b^2) \]
Families $\frac{1}{8}$ BPS states in the D1-D5-P system

Generic $\frac{1}{8}$ BPS state: Add general left-moving excitations

Momentum charge, $Q_P = L_{0,\text{left}}$

$$S = 2\pi \sqrt{Q_1 Q_5 Q_P}$$ (Strominger-Vafa)

Very special families of momentum excitations: “Supergraviton gas”

$$(| + \frac{1}{2} , + \frac{1}{2} \rangle_1)^{N_0} \otimes \left(\frac{1}{m! n!} (J^+_1)^m (L_{-1} - J^3_{-1})^n |00\rangle_k \right)^{N_{k,m,n}}$$

Quantum numbers

Define $\mathcal{N} = \frac{N_1 N_5}{a^2 + b^2}$

$$j_L = \frac{1}{2} \mathcal{N} \left(a^2 + \frac{m}{k} b^2 \right), \quad \tilde{j}_R = \frac{1}{2} \mathcal{N} a^2, \quad N_P = \frac{1}{2} \mathcal{N} \frac{m + n}{k} b^2$$

$$Q_1 Q_5 = R^2 (a^2 + b^2)$$
Families $\frac{1}{8}$ BPS states in the D1-D5-P system

Generic $\frac{1}{8}$ BPS state: Add general left-moving excitations

Momentum charge, $Q_P = L_{0,\text{left}}$

$$S = 2\pi \sqrt{Q_1 Q_5 Q_P} \quad \text{(Strominger-Vafa)}$$

Very special families of momentum excitations: “Supergraviton gas”

$$(| + \frac{1}{2}, + \frac{1}{2} \rangle_1)^{N_0} \otimes \left(\frac{1}{m! n!} (J^+_{-1})^m (L_{-1} - J^3_{-1})^n |00\rangle_k \right)^{N_{k,m,n}}$$

Quantum numbers

Define $N = \frac{N_1 N_5}{a^2 + b^2}$

$$j_L = \frac{1}{2} N \left(a^2 + \frac{m}{k} b^2 \right), \quad \tilde{j}_R = \frac{1}{2} N a^2, \quad N_P = \frac{1}{2} N \frac{m + n}{k} b^2$$

$$Q_1 Q_5 = R^2 (a^2 + b^2)$$
Families $\frac{1}{8}$ BPS states in the D1-D5-P system

Generic $\frac{1}{8}$ BPS state: Add general left-moving excitations

Momentum charge, $Q_P = L_{0,left}$

$$S = 2\pi \sqrt{Q_1 Q_5 Q_P} \quad \text{(Strominger-Vafa)}$$

Very special families of momentum excitations: “Supergraviton gas”

$$(| + \frac{1}{2}, + \frac{1}{2}\rangle_1)^{N_0} \otimes \left(\frac{1}{m! n!} (J^+_1)^m (L_{-1} - J^3_{-1})^n |00\rangle_k\right)^{N_{k,m,n}}$$

$$N_0 + k N_{k,m,n} = N \equiv N_1 N_5$$

Quantum numbers

Define $\mathcal{N} = \frac{N_1 N_5}{a^2 + b^2}$

$$j_L = \frac{1}{2} \mathcal{N} \left(a^2 + \frac{m}{k} b^2\right), \quad \tilde{j_R} = \frac{1}{2} \mathcal{N} a^2, \quad N_P = \frac{1}{2} \mathcal{N} \frac{m + n}{k} b^2$$

$D1$-$D5$ $l+\frac{1}{2},+\frac{1}{2}$ residue

$Q_1 Q_5 = R^2 (a^2 + b^2)$
Families $\frac{1}{8}$ BPS states in the D1-D5-P system

Generic $\frac{1}{8}$ BPS state: Add general left-moving excitations

Momentum charge, $Q_P = L_{0,\text{left}}$

$$S = 2\pi \sqrt{Q_1 Q_5 Q_P} \quad \text{(Strominger-Vafa)}$$

Very special families of momentum excitations: “Supergraviton gas”

$$\left(| + \frac{1}{2}, + \frac{1}{2} \rangle_1 \right)^{N_0} \otimes \left(\frac{1}{m! n!} (J^+_{-1})^m (L_{-1} - J^3_{-1})^n |00\rangle_k \right)^{N_{k,m,n}}$$

Quantum numbers

Define $N = \frac{N_1 N_5}{a^2 + b^2}$

$$j_L = \frac{1}{2} N \left(a^2 + \frac{m}{k} b^2 \right) , \quad \tilde{j}_R = \frac{1}{2} N a^2$$

$$N_P = \frac{1}{2} N \frac{m + n}{k} b^2$$

$D1$-$D5$ $l^{+\frac{1}{2},+\frac{1}{2}}$ residue

Special forms:

Adding pure momentum: $m = 0$.

Vanishing angular momentum: $m = 0, a \to 0$.

$$Q_1 Q_5 = R^2 (a^2 + b^2)$$
The “Supergraviton gas”

We know the supergravity duals of arbitrary superpositions of states of the form:

\[
\left(| + \frac{1}{2}, + \frac{1}{2} \right)_1 \right)^N \otimes \left[\otimes \left(\frac{1}{m_i! n_i!} (J^+_1)^{m_i} (L_1 - J^3_1)^{n_i} |00\rangle_{k_i} \right)^{N_{k_i,m_i,n_i}} \right]
\]
The “Supergraviton gas”
We know the supergravity duals of arbitrary superpositions of states of the form:

\((| + \frac{1}{2}, + \frac{1}{2} \rangle_1)^N_0 \otimes \bigotimes_{k_i, m_i, n_i} \left(\frac{1}{m_i! n_i!} (J^+_1)^{m_i} (L_{-1} - J^3_{-1})^{n_i} |00\rangle_{k_i} \right)^{N_{k_i, m_i, n_i}} \)

Holographic duals
Add momentum and angular momentum excitations to D1-D5 profiles:

\(g_1(v) + i g_2(v) = a e^{2\pi i v/R} \quad \text{“} g_5(v) \text{”} = b \sin(2\pi k v/R) \)
The “Supergraviton gas”
We know the supergravity duals of arbitrary superpositions of states of the form:
\[
(|+\frac{1}{2},+\frac{1}{2}\rangle)_1 N_0 \otimes \bigotimes_{k_i,m_i,n_i} \left(\frac{1}{m_i! n_i!} (J^+_1)^{m_i} (L_{-1} - J^3_{-1})^{n_i} |00\rangle_{k_i}\right)^{N_{k_i,m_i,n_i}}
\]

Holographic duals
Add momentum and angular momentum excitations to D1-D5 profiles:
\[
g_1(v) + ig_2(v) = a e^{2\pi iv/R}, \quad \text{“}g_5(v)\text{”} = b \sin(2\pi k v/R)
\]

to give:
\[
\tilde{j}_L = \frac{1}{2} \mathcal{N} \left(a^2 + \frac{m}{k} b^2 \right), \quad \tilde{j}_R = \frac{1}{2} \mathcal{N} a^2, \quad N_P = \frac{1}{2} \mathcal{N} \frac{m+n}{k} b^2
\]
The “Supergraviton gas”
We know the supergravity duals of arbitrary superpositions of states of the form:

\[\left(| + \frac{1}{2}, + \frac{1}{2} \right)_1^{N_0} \otimes \left\{ \bigotimes_{k_i, m_i, n_i} \left(\frac{1}{m_i! n_i!} (J^+_1)^{m_i} (L_1 - J^3_1)^{n_i} |00\rangle_{k_i} \right)^{N_{k_i, m_i, n_i}} \right\} \]

Holographic duals

Add momentum and angular momentum excitations to D1-D5 profiles:

\[g_1(v) + ig_2(v) = a e^{2\pi i v/R} \]

\[“g_5(v)” = b \sin(2\pi k v/R) \]

to give:

\[\tilde{j}_L = \frac{1}{2} \mathcal{N} \left(a^2 + \frac{m}{k} b^2 \right), \quad \tilde{j}_R = \frac{1}{2} \mathcal{N} a^2, \quad \tilde{N}_P = \frac{1}{2} \mathcal{N} \frac{m + n}{k} b^2 \]

Three mode numbers, \((k,m,n) \Rightarrow\) Supergravity duals depend on:

\[\chi_{k,m,n} \equiv R^{-1} (m + n) v + \frac{1}{2} (k - 2m) \psi - \frac{1}{2} k \phi \]
The “Supergraviton gas”
We know the supergravity duals of arbitrary superpositions of states of the form:
\[
(\left| + \frac{1}{2}, + \frac{1}{2}\right\rangle_1)^{N_0} \otimes \left(\bigotimes_{k_i,m_i,n_i} \frac{1}{m_i! n_i!} (J^+_1)^{m_i} (L_{-1} - J^3_{-1})^{n_i} \left| 00 \right\rangle_{k_i} \right)
\]

Holographic duals
Add momentum and angular momentum excitations to D1-D5 profiles:
\[
g_1(v) + ig_2(v) = a e^{2\pi iv/R} \quad \text{“}g_5(v)\text{”} = b \sin(2\pi k v/R)
\]

to give:
\[
\tilde{j}_L = \frac{1}{2} N \left(a^2 + \frac{m}{k} b^2 \right), \quad \tilde{j}_R = \frac{1}{2} N a^2, \quad N_P = \frac{1}{2} N \frac{m + n}{k} b^2
\]

Three mode numbers, \((k,m,n)\) \Rightarrow Supergravity duals depend on:
\[
\chi_{k,m,n} \equiv R^{-1} (m + n) v + \frac{1}{2} (k - 2m) \psi - \frac{1}{2} k \phi
\]

k-mode: \((\psi,\phi)\) \leftrightarrow \(j_L = j_R\) responsible for \(j_L = \tilde{j}_R = \frac{1}{2} N a^2\)
The “Supergraviton gas”
We know the supergravity duals of arbitrary superpositions of states of the form:
\[(| + \frac{1}{2}, + \frac{1}{2}\rangle_1)^{N_0} \otimes \left(\bigotimes_{k_i, m_i, n_i} \left(\frac{1}{m_i! n_i!} (J^+_1)^{m_i} (L_{-1} - J^3_{-1})^{n_i} |00\rangle_{k_i} \right)^{N_{k_i, m_i, n_i}} \right)\]

Holographic duals
Add momentum and angular momentum excitations to D1-D5 profiles:
\[g_1(v) + ig_2(v) = a e^{2\pi i v/R} \quad \text{“} g_5(v) \text{”} = b \sin(2\pi k v/R)\]

To give:
\[j_L = \frac{1}{2} N \left(a^2 + \frac{m}{k} b^2 \right), \quad \tilde{j}_R = \frac{1}{2} N a^2, \quad N_P = \frac{1}{2} N \frac{m + n}{k} b^2\]

Three mode numbers, \((k,m,n) \Rightarrow \text{Supergravity duals depend on:}\)
\[\chi_{k,m,n} \equiv R^{-1} (m + n) v + \frac{1}{2} (k - 2m) \psi - \frac{1}{2} k \phi\]

k-mode: \((\psi - \phi) \leftrightarrow j_L = j_R\) responsible for \(j_L = \tilde{j}_R = \frac{1}{2} N a^2\)

m-mode \((v - \psi) \leftrightarrow j_L, N_P\) responsible for \(\tilde{j}_R = \frac{1}{2} N \frac{m}{k} b^2, N_P = \frac{1}{2} N \frac{m}{k} b^2\)
The “Supergraviton gas”

We know the supergravity duals of arbitrary superpositions of states of the form:

\[(| + \frac{1}{2}, + \frac{1}{2}\rangle_1)^{N_0} \otimes \bigotimes_{k_i, m_i, n_i} \left(\frac{1}{m_i! n_i!} (J_{-1}^+)^{m_i} (L_{-1} - J_{-1}^3)^{n_i} |00\rangle_{k_i} \right)^{N_{k_i, m_i, n_i}} \]

Holographic duals

Add momentum and angular momentum excitations to D1-D5 profiles:

\[g_1(v) + ig_2(v) = a e^{2\pi iv/R} \quad \text{“}g_5(v)\text{”} = b \sin(2\pi k v/R)\]

to give:

\[j_L = \frac{1}{2} \mathcal{N} \left(a^2 + \frac{m}{k} b^2 \right), \quad \tilde{j}_R = \frac{1}{2} \mathcal{N} a^2, \quad N_P = \frac{1}{2} \mathcal{N} \frac{m+n}{k} b^2\]

Three mode numbers, \((k,m,n)\) \(\Rightarrow\) Supergravity duals depend on:

\[\chi_{k,m,n} \equiv R^{-1} (m+n) v + \frac{1}{2} (k - 2m) \psi - \frac{1}{2} k \phi\]

k-mode: \((\psi-\phi) \leftrightarrow j_L = j_R\) responsible for \(j_L = \tilde{j}_R = \frac{1}{2} \mathcal{N} a^2\)

\[\tilde{j}_R = \frac{1}{2} \mathcal{N} \frac{m}{k} b^2, \quad N_P = \frac{1}{2} \mathcal{N} \frac{m}{k} b^2\]

m-mode \((v-\psi) \leftrightarrow j_L, N_P\) responsible for \(\tilde{j}_R = \frac{1}{2} \mathcal{N} \frac{m}{k} b^2\)

n-mode \((v) \leftrightarrow N_P\) responsible for \(N_P = \frac{1}{2} \mathcal{N} \frac{n}{k} b^2\)
Building the Fluctuating BPS Microstate Geometries

IIB Supergravity on T^4: Supergravity + two (anti-self-dual) tensor multiplets in six-dimensions

Six-dimensional metric ansatz:

\[ds^2_6 = -\frac{2}{\sqrt{P}} (dv + \beta)(du + \omega - \frac{1}{2} Z_3 (dv + \beta)) + \sqrt{P} V^{-1} (d\psi + A)^2 + \sqrt{P} V d\vec{y} \cdot d\vec{y} \]

(Gutowski, Martelli and Reall)
Building the Fluctuating BPS Microstate Geometries

IIB Supergravity on T^4: Supergravity + two (anti-self-dual) tensor multiplets in six-dimensions

Six-dimensional metric ansatz:

\[
\frac{2}{\sqrt{P}} (dv + \beta) \left(du + \omega - \frac{1}{2} Z_3 (dv + \beta) \right) + \sqrt{P} V^{-1} (d\psi + A)^2 + \sqrt{P} V \, d\vec{y} \cdot d\vec{y}
\]

$u = \text{null time}; \ (v, \psi) \ \text{define a double } S^1 \ \text{fibration over a flat } R^3 \ \text{base with coordinates, } y.$
Building the Fluctuating BPS Microstate Geometries

IIB Supergravity on T^4: Supergravity + two (anti-self-dual) tensor multiplets in six-dimensions

Six-dimensional metric ansatz:

$$ds^2_6 = -\frac{2}{\sqrt{P}}(dv + \beta)(du + \omega - \frac{1}{2} Z_3 (dv + \beta)) + \sqrt{P} V^{-1} (d\psi + A)^2 + \sqrt{P} V d\tilde{y} \cdot d\tilde{y}$$

$u =$ null time; (v, ψ) define a double S^1 fibration over a flat R^3 base with coordinates, y.

The non-trivial homology cycles are defined through the pinching off of the $S^1 \times S^1$ fibration at special points in the R^3 base.
Building the Fluctuating BPS Microstate Geometries

IIB Supergravity on T^4: Supergravity + two (anti-self-dual) tensor multiplets in six-dimensions

Six-dimensional metric ansatz:

\[
 ds_6^2 = -\frac{2}{\sqrt{\mathcal{P}}} (dv + \beta)(du + \omega - \frac{1}{2} Z_3 (dv + \beta)) + \sqrt{\mathcal{P}} V^{-1} (d\psi + A)^2 + \sqrt{\mathcal{P}} V \, dy \cdot dy
\]

$u =$ null time; (v, ψ) define a double S^1 fibration over a flat R^3 base with coordinates, y.

The scale of everything is set by the “warp factors:” V, P and Z_3

The non-trivial homology cycles are defined through the pinching off of the $S^1 \times S^1$ fibration at special points in the R^3 base.
Building the Fluctuating BPS Microstate Geometries

IIB Supergravity on T^4: Supergravity + two (anti-self-dual) tensor multiplets in six-dimensions

Six-dimensional metric ansatz: $(\text{Gutowski, Martelli and Reall})$

$$ds^2_6 = -\frac{2}{\sqrt{\mathcal{P}}} (dv + \beta)(du + \omega - \frac{1}{2} Z_3 (dv + \beta)) + \sqrt{\mathcal{P}} V^{-1} (d\psi + A)^2 + \sqrt{\mathcal{P}} V d\vec{y} \cdot d\vec{y}$$

$u =$ null time; (v, ψ) define a double S^1 fibration over a flat R^3 base with coordinates, y.

The scale of everything is set by the “warp factors:” V, P and Z_3

The non-trivial homology cycles are defined through the pinching off of the $S^1 \times S^1$ fibration at special points in the R^3 base.

Maxwell Fields

$$G^{(a)} = d\left[-\frac{1}{2} \frac{\eta^{ab} Z_b}{\mathcal{P}} (du + \omega) \wedge (dv + \beta) \right] + \frac{1}{2} \eta^{ab} *_4 DZ_b + \frac{1}{2} (dv + \beta) \wedge \Theta^{(a)}$$

$$\mathcal{P} \equiv \frac{1}{2} \eta^{ab} Z_a Z_b \equiv Z_1 Z_2 - \frac{1}{2} Z_4^2$$
Building the Fluctuating BPS Microstate Geometries

IIB Supergravity on T^4: Supergravity + two (anti-self-dual) tensor multiplets in six-dimensions

Six-dimensional metric ansatz:

$$ds^2 = -\frac{2}{\sqrt{\mathcal{P}}} (dv + \beta)(du + \omega - \frac{1}{2} Z_3 (dv + \beta)) + \sqrt{\mathcal{P}} V^{-1} (d\psi + A)^2 + \sqrt{\mathcal{P}} V d\vec{y} \cdot d\vec{y}$$

$u =$ null time; (v, ψ) define a double S^1 fibration over a flat R^3 base with coordinates, y.

The scale of everything is set by the “warp factors:** V, P and Z_3

The non-trivial homology cycles are defined through the pinching off of the $S^1 \times S^1$ fibration at special points in the R^3 base.

Maxwell Fields

$$G^{(a)} = d\left[-\frac{1}{2} \eta^{ab} \mathcal{P} Z_b (du + \omega) \wedge (dv + \beta)\right] + \frac{1}{2} \eta^{ab} \ast_4 D Z_b + \frac{1}{2} (dv + \beta) \wedge \Theta^{(a)}$$

Electric Potentials

$$\mathcal{P} \equiv \frac{1}{2} \eta^{ab} Z_a Z_b \equiv Z_1 Z_2 - \frac{1}{2} Z_4^2$$

Magnetic Fluxes
The BPS Equations
The BPS Equations

Layer 1: Conditions on Maxwell Fields

\[\Theta^{(a)} = *_4 \Theta^{(a)} , \quad *_4 D (\partial_v Z_a) = \eta_{ab} D \Theta^{(b)} , \quad D *_4 D Z_a = -\eta_{ab} \Theta^{(b)} \wedge d\beta . \]

\((Z_a , \Theta^{(a)}) \) depend upon \((r, \theta)\) and

\[\chi_{k,m,n} \equiv R^{-1} (m + n) v + \frac{1}{2} (k - 2m) \psi - \frac{1}{2} k \phi \]

A homogeneous linear system
The BPS Equations

Layer 1: Conditions on Maxwell Fields A homogeneous linear system

\[\Theta^{(a)} = *_4 \Theta^{(a)} , \quad *_4 D (\partial_v Z_a) = \eta_{ab} D \Theta^{(b)} , \quad D *_4 D Z_a = -\eta_{ab} \Theta^{(b)} \wedge d\beta . \]

where \(D \Phi \equiv d_4 \Phi - \beta \wedge \partial_v \Phi \)

\((Z_a , \Theta^{(a)}) \) depend upon \((r, \theta)\) and

\[\chi_{k,m,n} \equiv R^{-1} (m + n) v + \frac{1}{2} (k - 2m) \psi - \frac{1}{2} k \phi \]

General solution known for two-centered geometries!
The BPS Equations

Layer 1: Conditions on Maxwell Fields

A homogeneous linear system

\(\Theta^{(a)} = *_4 \Theta^{(a)} , \quad *_4 D(\partial_v Z_a) = \eta_{ab} D\Theta^{(b)} , \quad D *_4 D Z_a = -\eta_{ab} \Theta^{(b)} \wedge d\beta . \)

where \(D\Phi \equiv d(4)\Phi - \beta \wedge \partial_v \Phi \)

\((Z_a , \Theta^{(a)}) \) depend upon \((r, \theta)\) and

\[\chi_{k,m,n} \equiv R^{-1} (m + n) v + \frac{1}{2} (k - 2m) \psi - \frac{1}{2} k \phi \]

General solution known for two-centered geometries!

Layer 2: Conditions on Metric pieces

An inhomogeneous linear system

\[
 ds^2_6 = - \frac{2}{\sqrt{P}} \left(dv + \beta \right) \left(du + \omega - \frac{1}{2} Z_3 \left(dv + \beta \right) \right) + \sqrt{P} \, V^{-1} \left(d\psi + A \right)^2 + \sqrt{P} \, V \, d\vec{y} \cdot d\vec{y} \\
 D\omega + *_4 D\omega - Z_3 \, d\beta = Z_a \Theta^{(a)} \\
 *_4 D *_4 \left(\partial_v \omega + \frac{1}{2} D Z_3 \right) = \partial_v^2 P - ((\partial_v Z_1)(\partial_v Z_2) - \frac{1}{2}(\partial_v Z_4)^2) - \frac{1}{4} \eta_{ab} *_4 \Theta^{(a)} \wedge \Theta^{(b)} \\
 (Z_3 , \omega) \) depend upon \((r, \theta)\) and (quadratic) products of harmonics that depend upon

\[\chi_{k_i,m_i,n_i} = R^{-1} (m_i + n_i) v + \frac{1}{2} (k_i - 2m_i) \psi - \frac{1}{2} k_i \phi \]
The BPS Equations

Layer 1: Conditions on Maxwell Fields A homogeneous linear system

\[\Theta^{(a)} = *_4 \Theta^{(a)} , \quad *_4 D (\partial_v Z_a) = \eta_{ab} D \Theta^{(b)} , \quad D *_4 D Z_a = -\eta_{ab} \Theta^{(b)} \wedge d\beta . \]

where \(D\Phi \equiv d_{(4)}\Phi - \beta \wedge \partial_v \Phi \)

\((Z_a, \Theta^{(a)})\) depend upon \((r, \theta)\) and

\[\chi_{k,m,n} \equiv R^{-1} (m + n) v + \frac{1}{2} (k - 2m) \psi - \frac{1}{2} k \phi \]

General solution known for two-centered geometries!

Layer 2: Conditions on Metric pieces An inhomogeneous linear system

\[ds^2_6 = -\frac{2}{\sqrt{\mathcal{P}}} (dv + \beta)(du + \omega - \frac{1}{2} Z_3 (dv + \beta)) + \sqrt{\mathcal{P}} V^{-1} (d\psi + A)^2 + \sqrt{\mathcal{P}} V dy \cdot dy \]

\[D\omega + *_4 D\omega - Z_3 d\beta = Z_a \Theta^{(a)} \]

\[*_4 D *_4 (\partial_v \omega + \frac{1}{2} D Z_3) = \partial_v^2 \mathcal{P} - ((\partial_v Z_1) (\partial_v Z_2) - \frac{1}{2} (\partial_v Z_4)^2) - \frac{1}{4} \eta_{ab} *_4 \Theta^{(a)} \wedge \Theta^{(b)} \]

\((Z_3, \omega)\) depend upon \((r, \theta)\) and (quadratic) products of harmonics that depend upon

\[\chi_{k_i,m_i,n_i} = R^{-1} (m_i + n_i) v + \frac{1}{2} (k_i - 2m_i) \psi - \frac{1}{2} k_i \phi \]

Interesting families of particular solutions known. General solution not known.
Linear system of gravitational BPS equations:

Critical to constructing the holographic duals of a generic superpositions of the states on multiple, independent strands:

\[(| + \frac{1}{2}, + \frac{1}{2}\rangle_1)^{N_0} \otimes \bigotimes_{k_i, m_i, n_i} \left(\frac{1}{m_i! n_i!} (J_1^+)^{m_i} (L_1 - J_1^3)^{n_i} |00\rangle_{k_i} \right) N_{k_i, m_i, n_i} \]
A Family of Microstate Geometries deep in the Black-Hole Regime

Add pure momentum states

\[N_0 + N_{1,0,n} = N_1 N_5 \]

\[(| + \frac{1}{2}, + \frac{1}{2} \rangle_1)^{N_0} \otimes \left(\frac{1}{n!} (L_{-1} - J_{-1}^3)^n |00\rangle_1 \right)^{N_{1,0,n}} \]
A Family of Microstate Geometries deep in the Black-Hole Regime

Add pure momentum states

\[
N_0 + N_{1,0,n} = N_1 N_5
\]

\[
Q_1 Q_5 = R^2 (a^2 + b^2)
\]

\[
(|+ \frac{1}{2}, +\frac{1}{2}\rangle_1)^N_0 \otimes \left(\frac{1}{n!} (L_{-1} - J_{-1}^3)^n |00\rangle_1\right)^{N_{1,0,n}}
\]

\[
\tilde{j}_L = \tilde{j}_R = \frac{1}{2} \mathcal{N} a^2
\]

\[
N_P = \frac{1}{2} \mathcal{N} \frac{n}{k} b^2
\]

D1-D5 residue

All angular momentum

P excitations

Angular momentum \(\equiv 0\)
A Family of Microstate Geometries deep in the Black-Hole Regime

Add pure momentum states

\[N_0 + N_{1,0,n} = N_1 N_5 \]

\[Q_1 Q_5 = R^2 (a^2 + b^2) \]

Can make \(N_P \) large, \(j_L = j_R \rightarrow 0 \)

\[(| + \frac{1}{2}, + \frac{1}{2} \rangle)_1^{N_0} \otimes \left(\frac{1}{n!} (L_{-1} - J_{-1}^3)^n |00 \rangle_1 \right)^{N_{1,0,n}} \]

\[j_L = j_R = \frac{1}{2} \mathcal{N} a^2 \]

\[N_P = \frac{1}{2} \mathcal{N} \frac{n}{k} b^2 \]

D1-D5 residue

All angular momentum

Angular momentum \(\equiv 0 \)
A Family of Microstate Geometries deep in the Black-Hole Regime

Add pure momentum states

\[N_0 + N_{1,0,n} = N_1 N_5 \]

\[Q_1 Q_5 = R^2 (a^2 + b^2) \]

Can make \(N_P \) large, \(j_L = j_R \to 0 \)

Geometry:

\[\ell_{AdS}^2 = \sqrt{Q_1 Q_5} \]

\[ds^2_{BTZ} = \ell_{AdS}^2 \left[\rho^2 (-dt^2 + dy^2) + \frac{d\rho^2}{\rho^2} + \rho_*^2 (dt + dy)^2 \right] \]

Scale of \(S^1 \) stabilizes at \(\rho_* \ell_{AdS} R \)

\[N_P = \frac{1}{2} \mathcal{N} \frac{n}{k} b^2 \]

\(D1\text{-}D5 \) residue

All angular momentum

Angular momentum \(\equiv 0 \)
A Family of Microstate Geometries deep in the Black-Hole Regime

Add pure momentum states

\[N_0 + N_{1,0,n} = N_1 N_5 \]

\[Q_1 Q_5 = R^2 (a^2 + b^2) \]

Can make \(N_P \) large, \(j_L = j_R \to 0 \)

Geometry:

Flat Space

\[\text{Flat Space} \]

\[\text{AdS}_3 \times S^3 \]

\[\text{BTZ} \times S^3 = \text{AdS}_2 \times S^1 \times S^3 \]

\[\text{Smooth cap} \]

\[\ell_{\text{AdS}}^2 = \sqrt{Q_1 Q_5} \]

\[ds_{\text{BTZ}}^2 = \ell_{\text{AdS}}^2 \left[\rho^2 (-dt^2 + dy^2) + \frac{d \rho^2}{\rho^2} + \rho_*^2 (dt + dy)^2 \right] \]

\[\rho_*^2 \sim \frac{Q_P}{Q_1 Q_5} \]

\[\text{Scale of } S^1 \text{ stabilizes at } \rho_* \ell_{\text{AdS}} R \]
A Family of Microstate Geometries deep in the Black-Hole Regime

Add pure momentum states

\[N_0 + N_{1,0,n} = N_1 N_5 \]

\[Q_1 Q_5 = R^2 (a^2 + b^2) \]

Can make \(N_P \) large, \(j_L = j_R \to 0 \)

Geometry:

Flat Space \(\rightarrow \) AdS \(_3 \times S^3 \)

AdS \(_3 \times S^3 \) \(\rightarrow \) BTZ \(\times S^3 \) = AdS \(_2 \times S^1 \times S^3 \)

\(\ell_{\text{AdS}}^2 = \sqrt{Q_1 Q_5} \)

\(ds_{\text{BTZ}}^2 = \ell_{\text{AdS}}^2 \left[\rho^2 (-dt^2 + dy^2) + \frac{d\rho^2}{\rho^2} + \rho^2_*(dt + dy)^2 \right] \)

\[\rho^2_* \sim \frac{Q_P}{Q_1 Q_5} \]

Scale of \(S^1 \) stabilizes at \(\rho_* \ell_{\text{AdS}} R \)

As \(a \to 0 \): \(j_L = j_R \to 0 \)

Depth of AdS \(_2 \) throat \(\rightarrow \infty \)
Several significant results
Several significant results

• First deep, scaling microstate geometry in Black-Hole regime with $j_L = j_R \rightarrow 0$

• Deep, scaling microstate geometry that goes to BTZ

• Deep, scaling \Rightarrow Arbitrarily large red-shifts
 Microstate Geometry \Rightarrow Smooth cap-off

• Momentum excitations localize at the bottom of the BTZ throat

• Holographic dictionary in AdS_3 for deep AdS_2/BTZ throat

• Geometry dual to states counted by Strominger-Vafa
Microstate Geometries for MSW Black Holes

Phase dependence of fluctuations:

$$\chi_{k,m,n} \equiv R^{-1} (m + n) \nu + \frac{1}{2} (k - 2m) \psi - \frac{1}{2} k \phi$$

AdS$_3$ \((u, v, r)\)

S3 \((\theta, \psi, \phi)\)
Microstate Geometries for MSW Black Holes

Phase dependence of fluctuations:

\[\chi_{k,m,n} \equiv R^{-1} (m + n) v + \frac{1}{2} (k - 2m) \psi - \frac{1}{2} k \phi \]

Standard dimensional reduction to five dimensions on \(v \) fiber: Must set \(m = n = 0 \)
Microstate Geometries for MSW Black Holes

Phase dependence of fluctuations:

\[\chi_{k,m,n} \equiv R^{-1} (m + n) v + \frac{1}{2} (k - 2m) \psi - \frac{1}{2} k \phi \]

Standard dimensional reduction to five dimensions on \(v \) fiber: Must set \(m = n = 0 \)

\[\Rightarrow \text{Kill all the interesting modes} \]

\[\left(\frac{1}{m! n!} (J^+_1)^m (L_1 - J^3_1)^n |00\rangle_k \right)^{N_{k,m,n}} \]
Microstate Geometries for MSW Black Holes

Phase dependence of fluctuations:

\[\chi_{k,m,n} \equiv R^{-1} (m + n) v + \frac{1}{2} (k - 2m) \psi - \frac{1}{2} k \phi \]

Standard dimensional reduction to five dimensions on \(v \) fiber: **Must set** \(m = n = 0 \)

\[\Rightarrow \text{Kill all the interesting modes} \]

However:

For \(k = 2m \) the solutions are independent of \(\psi \), the Hopf fiber of the \(S^3 \)

\[\Rightarrow \text{Reduction of fluctuating D1-D5 solutions (superstrata) to five-dimensional microstate geometries: capped BTZ } \times \ S^2 \]
Microstate Geometries for MSW Black Holes

Phase dependence of fluctuations:

\[\chi_{k,m,n} \equiv R^{-1} (m + n) v + \frac{1}{2} (k - 2m) \psi - \frac{1}{2} k \phi \]

Standard dimensional reduction to five dimensions on \(v \) fiber: Must set \(m = n = 0 \)

\[\Rightarrow \text{Kill all the interesting modes} \]

However:

For \(k = 2m \) the solutions are independent of \(\psi \), the Hopf fiber of the \(S^3 \)

\[\Rightarrow \text{Reduction of fluctuating D1-D5 solutions (superstrata) to five-dimensional microstate geometries: capped BTZ} \times S^2 \]

Before doing this: first enrich the family of solutions

It is relatively easy to generalize the entire IIB construction to include a KKM dipole charge, \(\kappa \), to the D1-D5 system
Some T-dualities

Starting configuration

<table>
<thead>
<tr>
<th>IIB</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>↑</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>↑</td>
<td>⇔</td>
<td>⇔</td>
<td>⇔</td>
<td>⇔</td>
</tr>
<tr>
<td>D5</td>
<td>↑</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>KKM</td>
<td>↑</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>
Some T-dualities

Starting configuration

<table>
<thead>
<tr>
<th>IIB</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>↑</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>↑</td>
<td>↔</td>
<td>↔</td>
<td>↔</td>
<td>↔</td>
</tr>
<tr>
<td>D5</td>
<td>↑</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>KKM</td>
<td>↑</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>

T-dualize 3 times to IIA:

<table>
<thead>
<tr>
<th>IIA</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>D4</td>
<td>↑</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>↑</td>
<td>↑</td>
<td>↔</td>
<td>↔</td>
<td>↑</td>
</tr>
<tr>
<td>D4</td>
<td>↑</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↔</td>
</tr>
<tr>
<td>NS5</td>
<td>↑</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>↔</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>
Some T-dualities

Starting configuration

<table>
<thead>
<tr>
<th>IIB</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>↑</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>↑</td>
<td>⇐</td>
<td>⇐</td>
<td>⇐</td>
<td>⇐</td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>↑</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>KKM</td>
<td>↑</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>

T-dualize 3 times to IIA:

<table>
<thead>
<tr>
<th>IIA</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>D4</td>
<td>↑</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>↑</td>
<td>↑</td>
<td>⇐</td>
<td>⇐</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>D4</td>
<td>↑</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>⇐</td>
<td>⇐</td>
</tr>
<tr>
<td>NS5</td>
<td>↑</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>⇐</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>

Uplift to M theory

<table>
<thead>
<tr>
<th>M</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5</td>
<td>↑</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>⇐</td>
<td>⇐</td>
<td></td>
</tr>
<tr>
<td>M5</td>
<td>↑</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>⇐</td>
<td>⇐</td>
</tr>
<tr>
<td>M5</td>
<td>↑</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>↑</td>
<td>←</td>
<td>←</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>
M-theory background

D1-D5-KKM solution ➔ M5-M5-M5 charges: \((Q_1, Q_5, \kappa)\)

+ dipolar/dissolved M2-M2-M2 charges

Dualities + compactification on \(\psi\) lattice:

D1-D5-KKM (4,4) supersymmetry ➔ M5-M5-M5 (0,4) supersymmetry
M-theory background

D1-D5-KKM solution \rightarrow M5-M5-M5 charges: (Q_1, Q_5, κ)

+ dipolar/dissolved M2-M2-M2 charges

Dualities + compactification on ψ lattice:

D1-D5-KKM (4,4) supersymmetry \rightarrow M5-M5-M5 (0,4) supersymmetry

Add momentum along common circle (5) … untouched in duality

<table>
<thead>
<tr>
<th>IIB</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>\uparrow</td>
<td>\ast</td>
<td>\ast</td>
<td>\ast</td>
<td>\ast</td>
<td>\uparrow</td>
<td>\leftarrow</td>
<td>\leftarrow</td>
<td>\leftarrow</td>
<td>\leftarrow</td>
</tr>
<tr>
<td>D5</td>
<td>\uparrow</td>
<td>\ast</td>
<td>\ast</td>
<td>\ast</td>
<td>\ast</td>
<td>\uparrow</td>
<td>\uparrow</td>
<td>\uparrow</td>
<td>\uparrow</td>
<td>\uparrow</td>
</tr>
<tr>
<td>KKM</td>
<td>\uparrow</td>
<td>\ast</td>
<td>\ast</td>
<td>\ast</td>
<td>\ast</td>
<td>\uparrow</td>
<td>\uparrow</td>
<td>\uparrow</td>
<td>\uparrow</td>
<td>\uparrow</td>
</tr>
<tr>
<td>P</td>
<td>\uparrow</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>4</th>
<th>10</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5</td>
<td>\uparrow</td>
<td>\ast</td>
<td>\ast</td>
<td>\ast</td>
<td>\uparrow</td>
<td>\uparrow</td>
<td>\uparrow</td>
<td>\leftarrow</td>
<td>\leftarrow</td>
<td>\uparrow</td>
<td>\uparrow</td>
</tr>
<tr>
<td>M5</td>
<td>\uparrow</td>
<td>\ast</td>
<td>\ast</td>
<td>\ast</td>
<td>\uparrow</td>
<td>\uparrow</td>
<td>\uparrow</td>
<td>\uparrow</td>
<td>\uparrow</td>
<td>\leftarrow</td>
<td>\leftarrow</td>
</tr>
<tr>
<td>M5</td>
<td>\uparrow</td>
<td>\ast</td>
<td>\ast</td>
<td>\ast</td>
<td>\uparrow</td>
<td>\leftarrow</td>
<td>\leftarrow</td>
<td>\uparrow</td>
<td>\uparrow</td>
<td>\uparrow</td>
<td>\uparrow</td>
</tr>
<tr>
<td>P</td>
<td>\uparrow</td>
</tr>
</tbody>
</table>
M-theory background

D1-D5-KKM solution \rightarrow M5-M5-M5 charges: (Q_1, Q_5, κ)

+ dipolar/dissolved M2-M2-M2 charges

Dualities + compactification on ψ lattice:

D1-D5-KKM (4,4) supersymmetry \rightarrow M5-M5-M5 (0,4) supersymmetry

Add momentum along common circle (5) … untouched in duality

IIB

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>up</td>
<td>star</td>
<td>star</td>
<td>star</td>
<td>star</td>
<td>up</td>
<td>leftrightarrow</td>
<td>leftrightarrow</td>
<td>leftrightarrow</td>
<td>leftrightarrow</td>
</tr>
<tr>
<td>D5</td>
<td>up</td>
<td>star</td>
<td>star</td>
<td>star</td>
<td>star</td>
<td>up</td>
<td>up</td>
<td>up</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>KKM</td>
<td>up</td>
<td>star</td>
<td>star</td>
<td>star</td>
<td>up</td>
<td>up</td>
<td>up</td>
<td>up</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>P</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>4</th>
<th>10</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5</td>
<td>up</td>
<td>star</td>
<td>star</td>
<td>star</td>
<td>up</td>
<td>up</td>
<td>up</td>
<td>leftrightarrow</td>
<td>leftrightarrow</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>M5</td>
<td>up</td>
<td>star</td>
<td>star</td>
<td>star</td>
<td>up</td>
<td>up</td>
<td>up</td>
<td>up</td>
<td>leftrightarrow</td>
<td>leftrightarrow</td>
<td></td>
</tr>
<tr>
<td>M5</td>
<td>up</td>
<td>star</td>
<td>star</td>
<td>star</td>
<td>up</td>
<td>leftrightarrow</td>
<td>leftrightarrow</td>
<td>leftrightarrow</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
<td>up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

→ *Momentum excitations of MSW string wrapping (5) direction* ..
MSW string vs M5 on \mathbb{T}^6 (or $\text{K3} \times \mathbb{T}^2$)

- **MSW:** Single M brane wrapped on very ample divisor of CY$_3$
- **Here:** Multiple, disjoint M branes \mathbb{T}^4's in \mathbb{T}^6
MSW string vs M5 on T^6 (or K3 × T^2)

- **MSW**: Single M brane wrapped on very ample divisor of CY₃
- **Here**: Multiple, disjoint M branes T⁴’s in T^6

• Non-trivial fluctuations require turning deforming Kahler moduli of the tori, “bending” disjoint M5’s into one another …

Universality of the five-dimensional solution:

• We have reduced to five-dimensions and so our solution is valid for any Calabi-Yau compactification with the same set of M5-brane charges
Fluctuating Microstate Geometries for MSW Strings

Previous picture compactified on Hopf fiber of S^3.

$BTZ \times S^2 = \text{AdS}_2 \times S^2 \times S^1$
Fluctuating Microstate Geometries for MSW Strings

Previous picture compactified on Hopf fiber of S^3.

Fluctuations:

$$\chi_{m,n} \equiv R^{-1} (m + n) v - m \phi$$

$\text{AdS}_3 \text{ or } S^1$ S^2 $\text{BTZ} \times S^2 = \text{AdS}_2 \times S^2 \times S^1$
Fluctuating Microstate Geometries for MSW Strings

Previous picture compactified on Hopf fiber of S^3.

Fluctuations:

$$\chi_{m,n} \equiv R^{-1} (m + n) v - m \phi$$

Deep scaling, microstate geometries for momentum excitations of MSW string …
Fluctuating Microstate Geometries for MSW Strings

Previous picture compactified on Hopf fiber of S^3.

Fluctuations:

$$\chi_{m,n} \equiv R^{-1} (m + n) v - m \phi$$

Deep scaling, microstate geometries for momentum excitations of MSW string …

Deconstruction: Attempts to realize black-hole microstate structure with perturbative/singular D0 branes or perturbative momenta on “Deconstructed” MSW string
Fluctuating Microstate Geometries for MSW Strings

Previous picture compactified on Hopf fiber of S^3.

Fluctuations:

$$\chi_{m,n} \equiv R^{-1} (m + n) v - m \phi$$

AdS$_3$ or S^1 \quad S^2

Deep scaling, microstate geometries for momentum excitations of MSW string …

Deconstruction: Attempts to realize black-hole microstate structure with perturbative/singular D0 branes or perturbative momenta on “Deconstructed” MSW string

Here: Precise, fully back-reacted, capped-off BTZ $\times S^2$ realization of the deconstructed configurations …

….. related to D1-D5-P microstate structure
Conclusions
Conclusions

- We have explicit microstate geometries that are holographic duals to precise families of D1-D5-P CFT states
Conclusions

- We have explicit microstate geometries that are holographic duals to precise families of D1-D5-P CFT states
- First deep, scaling microstate geometry in *Black-Hole Regime* with $j_L = j_R \rightarrow 0$
- Deep, scaling geometry going to BTZ $\times S^3$ or BTZ $\times S^2$
- Momentum excitations localize at bottom of throat and create smooth cap
- Holographic dictionary in AdS_3 for deep AdS_2/BTZ throat
Conclusions

- We have explicit microstate geometries that are holographic duals to precise families of D1-D5-P CFT states
- First deep, scaling microstate geometry in *Black-Hole Regime* with $j_L = j_R \to 0$
- Deep, scaling geometry going to BTZ $\times S^3$ or BTZ $\times S^2$
- Momentum excitations localize at bottom of throat and create smooth cap
- Holographic dictionary in AdS$_3$ for deep AdS$_2$/BTZ throat
- Microstate geometries for MSW … and that fully realize deconstruction
Conclusions

- We have explicit microstate geometries that are holographic duals to precise families of D1-D5-P CFT states
- First deep, scaling microstate geometry in *Black-Hole Regime* with $j_L = j_R \to 0$
- Deep, scaling geometry going to BTZ $\times S^3$ or BTZ $\times S^2$
- Momentum excitations localize at bottom of throat and create smooth cap
- Holographic dictionary in AdS$_3$ for deep AdS$_2$/BTZ throat
- Microstate geometries for MSW … and that fully realize deconstruction
- Microstate geometries capture large-scale universal features of all(?) black-hole microstate descriptions: MSW/D1-D5-P/Denconstruction/Quiver QM
Conclusions

- We have explicit microstate geometries that are holographic duals to precise families of D1-D5-P CFT states

- First deep, scaling microstate geometry in *Black-Hole Regime* with $j_L = j_R \to 0$

- Deep, scaling geometry going to BTZ $\times S^3$ or BTZ $\times S^2$

- Momentum excitations localize at bottom of throat and create smooth cap

- Holographic dictionary in AdS$_3$ for deep AdS$_2$/BTZ throat

- Microstate geometries for MSW … and that fully realize deconstruction

- Microstate geometries capture large-scale universal features of all(?) black-hole microstate descriptions: *MSW/D1-D5-P/Denconstruction/Quiver QM*

Open issues

- Twisted sector excitations. Relation to multi-centered geometries?

- Holography/CFT states of MSW string dual to new microstate geometries

- Probe the IR physics/large-t correlators of these new geometries